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We study the analytic properties of the photonic crystal superprism resolution parametersp, q, and r
introduced previously by Baba and MatsumotofAppl. Phys. Lett.81, 2325 s2002dg, which characterize the
potential dispersive power of a superprism. We find closed form expressions for these quantities that greatly
simplify their accurate evaluation and reveal significant insights about their behavior. The expressions imply
general properties of the parameters which are true for all bands and all photonic crystals. In particular, we
demonstrate that all photonic crystals exhibit infinite resolution as measured by the parameterr along particular
contours in any photonic band.
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I. INTRODUCTION

Photonic crystals, while still best known for their unique
diffractive properties such as Bragg reflection, photonic band
gaps, and strongly modified density of states, are increas-
ingly attracting attention for their intriguing dispersive be-
havior within the photonic bands. Since being highlighted by
Notomi f1g, these dispersive properties have been explored
in theory and experiment in the form of negative refraction
f2–5g, and more generally in the form of thesuperprism
f6–11g. A superprism is a two-dimensional photonic crystal
device, usually planar, that exhibits very strong angular steer-
ing of an output beam in response to modest changes in the
angle or wavelength of an input beam. Such a device has
obvious utility in applications such as switching, but also as
an output coupler onto detector arraysf12g.

The basic behavior of a superprism is commonly under-
stood in terms of a momentum conservation argument based
on the equifrequency contours of the two-dimensional in-
plane band structure of the photonic crystalf1g. The standard
construction is illustrated in Fig. 1. At the frequency of in-
terest, the dispersion curves are drawn for an external uni-
form mediumsthick circled and photonic crystalsthin curved.
The component of the incident wave vectork that is tangen-
tial to the interface between the two mediaschain lined is
conserved to within a reciprocal lattice vector upon refrac-
tion and determines the possible wave vectorsk within the
photonic crystal. The normal to the photonic dispersion
curve atk gives the direction of energy flow within the crys-
tal. In Fig. 1, only one of the two solutions carries energy
into the crystal, and the other is disregarded. If the photonic
crystal and the incoming beam are both very broad so that
the approximation of plane-wave inputs is reasonable, this
construction correctly predicts the propagation within the
crystal.

However, as pointed out in a series of papers by Baba and
co-workersf13–15g, in order to design superprisms that work
effectively, it is necessary to account for a number of addi-

tional factors. In practice, the plane-wave approximation is
an imperfect one and the finite size of both the optical beams
and the crystal plays an important rolef16g. Since the angu-
lar spectrum of a Gaussian beam has a finite width in the
plane-wave basis, different angular components undergo dif-
ferent degrees of refraction upon entering the crystal. This
leads to beam spreading and a departure from the simple
predictions of the geometric treatment above. To ensure that
the refracted beam remains well collimated and to determine
the ability of a crystal of a given size to separate incoming
beams of different angles or frequencies, we must quantify
the resolution properties of the superprism.

To this end, Baba and co-workersf13,14g introduced three
standard parametersp, q, and r that relate the normalized
optical frequencyṽ;v / s2pcd=a/l, the propagation angle

FIG. 1. Construction for refraction at the interface between a
uniform medium and a photonic crystal. Equifrequency curves for a
uniform sthick lined and triangular photonic crystalsfine lined are
shown. Light is incident from a uniform medium with wave vector
k upon an interface with the photonic crystalschain lined. The tan-
gential wave vector component at the interface is conservedsdotted
lined identifying the allowed output wave vectorsk. The direction
of the group velocityv in the photonic crystal is given by the
normal to the equifrequency curve at its intersection withk.
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of the incoming beamui and the propagation angle of the
refracted beamuc. See Fig. 2 for the definitions of these
angles, and note especially thatuc is the angle of the group
velocity inside the crystal, not of the wave vectork. The
generalized angular resolving power, given by

p ; U ]uc

]ui
U

ṽ

, s1d

measures the variation of output angle with input angle at
fixed frequency. The generalized dispersion, given by

q ; U ]uc

]ṽ
U

ui

, s2d

measures the change in the output angle with frequency at
fixed input angle. Finally, the resolution parameterr satisfies

r ;
q

p
; U ]uc

]ṽ
U

ui

YU ]uc

]ui
U

ṽ

= − U ]ui

]ṽ
U

uc

. s3d

The resolution parameter scales the change of propagation
angle with frequency, the most important attribute of a spec-
trometer, with the change of propagation angle with angle of
incidence. The latter gives different frequency components
the same propagation angle due to the range of angles
present in the incident beam, and thus measures cross talk in
the spectrometer. The three parametersp,q,r are defined
throughout the first Brillouin zone, and every point in the
zone corresponds to a particular experimental configuration
of input angleui and frequencyṽ.

Using these three quantities, Baba and co-workers have
explored a number of photonic crystal structures and super-
prism geometries in order to achieve high resolutions, and
have identified structures withr .75. For comparison, con-
ventional prisms have a resolution parameter of order unity.

However, several questions remain. Determination of the
superprism parameters themselves is an intensive procedure
since they depend on second derivatives of the photonic
crystal dispersion relation, calculated along sharply curving
contours. The difficulty of this is exacerbated by the high
resolutions we have noted can occur in photonic crystals. For
example, calculatingp by first principles requires determin-
ing the group velocityv==kṽ along an equifrequency con-
tour, and implicitly parametrizing that contour with the input
angleui. Only then can the derivativeu]uc/]uiuṽ, be evalu-
ated. Since the equifrequency contours are strongly curved,
this operation is numerically awkward, is ill suited to rectan-
gular discretizations of the Brillouin zone, and is accurate
only for extremely high-resolution sampling grids. More-
over, since the superprism parameters are found entirely nu-
merically and are complicated functions, it is very difficult to
develop much intuition for their general properties. Finally,
the parameters have only been evaluated for the first few
bands and for a limited range of photonic crystal designs. As
such, it has not been possible to draw general conclusions
regarding properties of arbitrary crystals or bands.

Here we provide answers to all these issues. Primarily, we
find explicit analytic formulas forp, q, andr expressed only
in terms of the incoming wave vector, and the standard first
and second derivatives of the band surfaces with respect to
the wave vector. This avoids the awkward process of calcu-
lating derivatives along curved arcs, and improves the accu-
racy of the results. In this way we show, for example, that the
quantityp from Eq. s1d is closely related to the curvature of
the equifrequency curves, as defined in the differential geom-
etry of plane curvesf17g. We also use these formulas to
derive general properties about rotation of the crystal and the
behavior of the parameters in any band of a photonic crystal.
We show for instance that, for any photonic crystal, along a
specific contour in the Brillouin zone,p=0. This contour
then corresponds to a configuration in which the photonic
crystal collimates the incident beam, with the result that the
resolution parameterr diverges. That is, any band of any
photonic crystal contains points of infinite resolution.

II. THEORY

We consider a two-dimensional photonic crystal, typically
a square or triangular lattice with perioda. As indicated in
Fig. 2, light with wave vectork is incident from an external
medium with refractive indexn. In the external medium, we
have the dispersion relation

ṽ =
auk u
2pn

. s4d

The refracted wave within the crystal must satisfy the disper-
sion relation of the crystal, that is, it must correspond to a
solution ṽ=ṽiskd, for some photonic bandi at a pointk
within the first Brillouin zone.

We introduce two sets of coordinate axes in reciprocal
space,sx,yd and sh ,xd. The pairsx,yd are the natural coor-
dinates of the Brillouin zone such thatx lies along theG-X
direction of the lattice. The coordinatessh ,xd are rotated by

FIG. 2. Geometry for the superprism analysis. The coordinates
sx,yd are the conventional coordinates of the Brillouin zone. The
coordinatessh ,xd are aligned with the cut plane of the crystal
which lies along the directiont̂. The anglec=0 if the crystal cut
plane is along theG-X direction. The wave vectork represents the
incoming beam at an angleui to the normal to the interfacen̂, and
k is the wave vector of the refracted beam inside the crystal. The
angle between the normaln̂ and the group velocityv inside the
crystal is denoteduc. The vectorsk and v are in general not
collinear.
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an anglec so as to be aligned with the crystal interface. The
two sets are thus related by

Fh

x
G = Fcosc − sinc

sinc cosc
GFx

y
G . s5d

Note that the anglec depends only on the relative orientation
of the interface between the uniform medium and the crystal,
and the crystal lattice vectors. Thusc=0 when the interface
tangentt̂ lies along theG-X direction.

Figure 2 is of course closely related to the construction in
Fig. 1. The crystal interface indicated by the chain line in
Fig. 1 corresponds to theh axis in Fig 2. Note that while
there are two solutions fork in Fig. 1, only one of them
carries energy into the crystal and is of interest. The group
velocitiesv in each figure correspond.

As mentioned previously, the internal and external wave
vectors are related by the conservation of the tangential wave
vector component at the interface, so thatsk −kd ·t̂ =0, or
equivalently

kh = kh, s6d

where we use the notationk =skh ,kxd ssee Fig. 1d.
Now consider the directions of propagation of the incident

and refracted beams. The group velocity in each medium is
given by the gradient of the equifrequency curves,

v = svh,vxd = =kṽskd = sṽ,h,ṽ,xd, s7d

where subscripts after commas denote partial derivatives:

ṽ,h =
]ṽ

]h
, ṽ,x =

]ṽ

]x
. s8d

In the isotropic medium,v is parallel to the wave vector
k. In the photonic crystal, however, which behaves essen-
tially as a dispersive anisotropic material, the group velocity
and wave vector are in general not collinear. Thus, the inci-
dent and refracted angles, respectively, satisfy

ui = tan−1 kh

kx

, uc = tan−1 vh

vx

. s9d

A. Derivation of formulas

We now derive explicit formulas for the superprism pa-
rameters. In this section, we work exclusively in thesh ,xd
coordinate system. Beginning with the resolving powerp,
elementary results give

p ; U ]uc

]ui
U

ṽ

; U ]

]ui
U

ṽ

tan−1svh /vxd

=
1

uvu2SvxU ]vh

]ui
U

ṽ

− vhU ]vx

]ui
U

ṽ
D . s10d

Since the equifrequency curves are complicated and can only
be followed numerically, the derivatives of the group veloc-
ity components inside the parentheses of the final expression
are awkward to calculate, and require a high sampling reso-
lution for accuracyf13g. In Appendix A 1, we show how to

write these expressions in terms ofk and the standard partial
derivativesṽ,h ,ṽ,x, and second derivativesṽ,hh ,ṽ,hx ,ṽ,xx.
The final expression for the angular resolving power is found
to be

p =
kx

ṽ,x
F 1

uvu2
sṽ,hhṽ,x

2 + ṽ,xxṽ,h
2 − 2ṽ,hxṽ,hṽ,xdG .

s11d

The dispersion parameterq is found in a similar fashion:

q ; U ]uc

]ṽ
U

ui

; U ]

]ṽ
U

ui

tan−1svh /vxd

=
1

uvu2SvxU ]vh

]ṽ
U

ui

− vhU vx

]ṽ
U

ui

D . s12d

Using results in Appendix A 1, after some manipulation we
find

q =
kh

ṽ,x

1

uvu2F ṽ,hhṽ,x
2 + ṽ,xxṽ,h

2 − 2ṽ,hxṽ,hṽ,x

ṽ

+
ṽ,xṽ,hx − ṽ,hṽ,xx

kh
G s13d

=
kh

kx

p

ṽ
+

1

uvu2S ṽ,xṽ,hx − ṽ,hṽ,xx

ṽ,x
D . s14d

The resolution parameter is thus

r =
1

kx
Skh

ṽ
+

ṽ,xṽ,hx − ṽ,hṽ,xx

ṽ,hhṽ,x
2 + ṽ,xxṽ,h

2 − 2ṽ,hxṽ,hṽ,x
D . s15d

If desired, the final result may also be obtained by direct
calculation of u]ui /]ṽuuc

. Equationss11d, s13d, ands15d are
the first principal results of the paper. Using these results, it
is now elementary to construct detailed plots of these quan-
tities throughout the Brillouin zone, without unduly high
sampling resolution.

We indicated earlier that these expressions forp, p, andr
improve the accuracy of their evaluation. It is true that both
our formulas and the first principles definitionss1d–s3d re-
quire the calculation of numerical second derivatives, so at
first sight both methods should be equally susceptible to nu-
merical noise. However, note that in Eqs.s11d, s13d, and
s15d, the second derivatives appear explicitly and may be
found by standard finite differences along the Cartesian axes
h andx, so that fourth order accuracy is easily obtained. In
contrast, the second derivatives in Eqs.s1d–s3d are implicit.
These formulas explictly involve only first derivatives, but
they depend on the angleuc which is the direction of the
gradientv. As the derivatives are to be taken along compli-
cated curves corresponding to fixedṽ, ui, or uc, it would be
a nontrivial and tedious programming task to achieve fourth
order accuracy using the first principles definitions.

B. The p parameter as a curvature

Equationss11d–s15d express the parameters in terms of
theh ,x coordinate frame aligned with the external medium–

ANALYTIC PROPERTIES OF PHOTONIC CRYSTAL… PHYSICAL REVIEW E 71, 056608s2005d

056608-3



crystal interface. For both numerical convenience and physi-
cal insight it can be more helpful to express the quantities in
terms of the Brillouin zone coordinatesx,y. The various de-
rivatives ṽ,h, ṽ,x, ṽ,hh, etc., are easily converted to the de-
rivativesṽ,x, ṽ,y, ṽ,xx, ṽ,xy, andṽ,yy using the transformation

3
]

]h

]

]x
4 = Fcosc − sinc

sinc cosc
G3

]

]x

]

]y
4 . s16d

Performing this transformation, we find in particular that the
expression

G =
ṽ,hhṽ,x

2 + ṽ,xxṽ,h
2 − 2ṽ,hxṽ,hṽ,x

uvu3
s17d

=
ṽ,xxṽ,y

2 + ṽ,yyṽ,x
2 − 2ṽ,xyṽ,xṽ,y

uvu3
s18d

which appears in all three equations is invariant. In fact this
is a well-known quantity—thecurvatureg of the plane curve
satisfyingṽsx,yd=ṽ0 f17g, and defined as

g = df/ds, s19d

wheref is the angle of the tangent vectort =s−ṽ,y,ṽ,xd, and
s is the arclength along the contour. Thus we have

p =
kx

ṽ,x

uvuG, s20d

and using the relationskx=s2pnṽ /adcosui and ṽ,x

= uvucosuc, we obtain the pleasing expression

p =
cosui

cosuc

n2pṽ

a
G. s21d

Now it is straightforward to show that in a uniform isotropic
medium of indexni, G=a/ s2pniṽd, and thus for an interface
between two uniform media of indicesn1 andn2,

puniform =
n1 cosui

n2 cosuc
, s22d

which can also be obtained directly from Eq.s1d in combi-
nation with Snell’s law. Thus, finally, we have the result that
for the photonic crystal,p can be considered as a factor due
to a generalized Snell’s law multiplied by the curvature of
the equifrequency contour at the operating frequency. Below,
we explore the physical significance of this result. Note fi-
nally that due to the invariance ofG with respect toc, the
only factor in Eq. s11d that givesp a dependence on the
orientation of the crystal is the factorkx / ṽx. We discuss this
further in Sec. III.

C. Alternate forms for q

Given the similarity of the definitionss1d and s2d, it is
natural to wonder whetherq can be expressed in terms of the
curvature of the contours of fixed input angleui, just asp

depends on the curvature of the equifrequency contours.
However, the second term in Eq.s13d is not invariant under
the coordinate transformation and such a relation does not
exist. The reason of course, is that the output angleuc is still
given by the normal to the equifrequency contours and so
Eqs.s1d ands2d are not perfect analogs with respect to inter-
change of the variables. However, a little manipulation re-
veals theq=skx / ṽ,xdsui,huc,x−ui,xuc,hd. Thinking of the plane
embedded in three space, this relation has a natural represen-
tation in terms of the vector cross product:

q =
kx

ṽ,x

f„=ksuid,0… 3 „=ksucd,0…‡z s23d

=
cosui

cosuc

n2pṽ

a

1

uvu
f„=ksuid,0… 3 „=ksucd,0…‡z s24d

which contains the identical Snell’s law factor seen in the
second equality of Eq.s21d.

III. FEATURES IN CONTOUR DIAGRAMS

From the work of Baba and co-workersf13,14g, it is
known that the superprism parametersp, q, and r show a
surprising degree of fine structure. Using our expressions for
these parameters, we can now understand the features in
these diagrams. To begin, in Fig. 3 we show the equifre-
quency contours for the lowest band of a two-dimensional
rectangular lattice of air holes in siliconsrefractive index
3.065, perioda, air hole radius 0.2635a, corresponding to the
configuration used in Ref.f15gd. This band has a minimum at
G at the Brillouin zone center, maxima atM, and saddle
points atX. Figure 4 presents plots of the superprism param-
eters log10u1/pu, log10uqu, and log10ur u for four different angles
of incidence, 0°, 30°, 45°, and 70°. The incoming light is
incident from a uniform medium with index 3.065. The
quantities in these and all following plots were calculated
with Eqs.s11d–s15d using the commercial band structure tool
BandSOLVEf18g.

In Fig. 4 we use the naturalx,y coordinates in the Bril-
louin zone; thej ,h system is rotated byc, with the short

FIG. 3. Equifrequency contours and Brillouin zone for the first
band of the photonic crystal with parameters given in the text. The
band exhibits asnondifferentiabled minimum atG, a saddle point at
X, and a maximum atM.
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broken white lines through the origin denoting the direction
of the h axis. Recall that a beam directed perpendicular to
the h axis is normally incident upon the crystal.

A. Properties of p

Let us first consider the results foru1/pu in the left col-
umn. We choose to plotu1/pu rather thanupu since then the
logarithmic plots ofur u can be understood as the sum of the
corresponding plots ofu1/pu and uqu. In these plots, white
indicates positive values, and black indicates negative re-
gions. Thus since we are plotting log10u1/pu, white corre-
sponds to small values ofupu and black to large values ofupu.

Eachu1/pu plot shows two obvious features, a continuous
white curve that passes through theX points swhich we see
below are saddle points of the band surfaced, and a black
curve that passes through the origin. Note that the white
curve is invariant with respect toc. In fact, it corresponds to
the zeros of the curvature functionG which depends only on
the band structure and not on the interface properties. The
physical relevance of the curvature is seen more clearly in
Fig. 5 which superimposesu1/pu with equifrequency con-
tours for the first two bands. By definitionfsee Eq.s19dg, the
line of zero curvatureG=0 traces out the inflection points of
the equifrequency contours, as is apparent in Fig. 5. It is easy
to understand whyp should vanish at such points. Varying

FIG. 4. Contour plots over the entire Brillouin zone of log10u1/pu, log10uqu, and log10ur u sleft to rightd for a photonic crystal with
parameters given in the text. The rows correspond to different orientations of the crystal cut plane with respect to theG-X direction. From
the top, the angles arec=0° scut plane alongG-Xd, 30°, 45°scut plane alongg-Md, and 70°. The broken white lines through the origin lie
along the interface between the two media and thus indicate the direction of theh axis.
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the input angleui corresponds to moving along the equifre-
quency contour at the working frequency. Near an inflection
point, the group velocity is constant to first order, and so the
angleuc is also constant. By Eq.s1d, we havep=0.

Note that in Fig. 5 for the second band we illustrate a case
where the saddle point lies near but not exactly atM. The
lines giving zeros ofG intersectG-X and G-Y lines at right
angles, and continue smoothly into the neighboring quad-
rants of the Brillouin zone.

Returning to the plots in the first column of Fig. 4, the
black curve describes the locus of the functionṽ,x=0 or
equivalently cosuc=0, which from Eq.s21d is the path along
which p becomes singular. In theory, points near this curve

exhibit very large angular resolving power. However, in
practice, these regions are not very accessible, since with
ṽ,x<0, the group velocity is almost parallel to the interface
of the crystal and the light travels almost parallel to the sur-
face rather than through the crystal. It is interesting that at
angles other thanc=0° and 45°, the curveṽ,x=0 is not
symmetric with respect to the normal to the interface. This is
because at other values ofc, the crystal does not have mirror
symmetry in the direction of normal incidence and so the
input angles ±ui are not equivalent.

B. Properties of q

Consider now the plots ofuqu in the second column of Fig.
4. Again, the plots are characterized by fine lines of very
large swhited and very smallsblackd values, but note that
now both sets of curves depend on the interface anglec. The
white maxima curves are identical to the minima in theu1/pu
plots. This is to be expected from the explicit dependence on
p in Eq. s13d. The complicated black minima curves obvi-
ously correspond to the cancellation of the two terms in Eq.
s13d, but more insight can be gained from Eq.s23d. The cross
product in that expression vanishes when the contours of
input angleui and output angleuc are locally tangent. This is
illustrated in Fig. 6 which superimposes the contours of these
angles with theuqu function for three angles ofc. The diffuse
black contours corresponding toq=0 trace out the lines in
the Brillouin zone where the two types of contours are lo-
cally parallel. This result has a simple physical interpretation.
Recall that theq function is defined for constant input angle
ui. Thus as the frequency is varied, we move along a contour
of fixed ui. If this contour is tangent to a contour of fixeduc,
thenuc is unchanged as we sweep out theui contour, andq
vanishes. On the other hand, we would expect that theq
function should be enhanced where the contours are locally
perpendicular, but this effect tends to be swamped by the
divergence of the cosuc term in the denominator of Eq.s23d.

C. Properties of r

The plots ofur u in the third column of Fig. 4 are simply
the sums of the previous two columns and there are no new
features to explain. Typically, we are interested in regions of
the Brillouin zone wherer is large. However, noting that the
largest values ofr correspond to the zeros ofG which are
invariant with respect to the crystal orientation, we obtain the
important result that rotating the crystal cannot improve the
maximum potential values ofr. However, rotations can make
attractive parts of the Brillouin zone moreaccessible, by
moving them away from points whereṽ,x<0.

IV. GENERAL PROPERTIES OF THE PARAMETERS

The simple forms18d of the curvatureG lets us make a
number of general statements about the superprism param-
eters for all two-dimensional photonic crystals and all bands.
In the figures already examined, paths of zero curvature were
clearly visible. We now demonstrate that this is a universal
property. We first recall the fundamental result that every
photonic band contains several critical points within the Bril-

FIG. 5. Role of the curvatureG in the structure ofp for the
lowest two bands atc=0. The peak of the diffuse white contour
represents zeros ofG. Thin white curves are the equifrequency
contours of each band. For the lowest band, shown insad the black
dotted lines indicate the direction of thep=0 curves obtained by
quadratic expansion of the band at the saddle points atX. For the
second band, shown insbd, there is a band maximum atG, minima
at X andY, and a saddle point just beforeM on G-M.
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louin zone. For two-dimensional photonic crystals, such as
the structures we are considering here, the critical points in-
clude at least one minimum, one maximum, and two saddle
points f19,20g. The group velocity vanishes at the critical
points, so in the neighborhood of a critical point of frequency
ṽ0, the frequency can be written as the quadratic form

ṽ = ṽ0 +
sdqxd2

2Cx
+

sdqyd2

2Cy
s25d

for constantsCx and Cy sthese are similar to the effective
masses in periodic electronic systemsd f21g. At maxima or

minima, Cx and Cy have the same sign, while they have
opposite signs at saddle points. Now letdqy=adqx for some
a. Then near a critical point we have the quadratic expan-
sion,

uvuG =
s1/CxCydf1/Cx + a2/Cyg

f1/Cx
2 + a2/Cy

2g
. s26d

Thus as we approach a saddle point along the linea
= ±ÎuCx/Cyu, the quantityuvuG vanishes and since there are
saddle points in every band,there are positions where p=0,
and therefore where r→`, in every band for any photonic
crystal. This very general statement is the second principal
result of this paper. Note that near these positions we expect
a rapidly changing and very large but finiter. Of course, this
argument does not apply to minima and maxima, for which
Cx andCy have the same sign.

In fact there are not just isolated points of vanishingG
and thus infiniter, but continuous closed paths through the
Brillouin zone. To see this, consider an irreducible segment
of the Brillouin zone. Within this segment or on its boundary,
there must exist a band maximumU+ and minimumU−. As
is evident from the quadratic expansions26d, the quantity
uvuG at U+ and U− has opposite signs. Then sinceuvuG is
smooth, if we consider lines connectingU+ andU− and not
leaving the segment, there must be an odd number of points
along each line at whichuvuG vanishes. By choosing arbi-
trary paths betweenU+ andU− we connect up such points of
zero curvature to form trajectories. Since the curvature also
vanishes at the saddle points in the segment, the saddle
points must lie on the trajectories of zero curvature. If there
is only one such trajectory it connects the two saddle points
through the points of zero curvature on the lines fromU+ to
U−.

Before closing this section a few comments need to be
made. The first is that in Eq.s25d we have taken the principal
axes of the critical point to align with the coordinate axes.
Though this is not true in general, the calculation is justified
since the quantityuvuG is invariant under rotations. Second,
note from Eq.s26d that uvuG is not uniquely defined at the
critical points, varying between 1/Cx and 1/Cy. However,
this is only true at the critical points wherev vanishes. None-
theless, it shows that operating close to critical points is not
desirable, unlessCx=Cy.

V. INFINITE r AND REAL SYSTEMS

Although we have drawn attention to the possibilities of
zero diffraction along the lines wherep=0, a real system can
of course never attain this value, since the nonzero line-
widths of the frequency and wave vector spectrum will
smear out the values of the superprism parameters. Recall
that through Eqs.s4d ands6d, each incoming plane wave at a
given frequency is mapped to a particular point in the Bril-
louin zone. Thus a distribution of incoming wave vectors and
frequencies is mapped to a patch of the Brillouin zone. For a
Gaussian beam of given angular spreadDk and linewidthDv
say, it would be straightforward to determine the size of this
patch and so obtain averaged values ofp, q, andr. For cer-

FIG. 6. Role of the isocontours ofui sdashed whited and uc

sdashed blackd in the structure ofq for the lowest band atc=0
sleftd, 30° scenterd, and 45°srightd. The diffuse black contour rep-
resents zeros ofG.
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tain problems, the minimum value over the patch might be
more relevant than the average. A detailed analysis of the
degree of averaging as a function of the beamwidth and line-
width is beyond the scope of this paper; however, one can
imagine several ways to mitigate the problem. Of course, we
can always reduce the impact of angular spreading by using
a sufficiently large crystal and broad beam. However, certain
portions of the Brillouin zone are intrinsically less sensitive
to linewidth issues. For example, consider the “corner” of the
p=0 curve in Fig. 5 atskxa,kyad<s2.7,2.7d. The curvature
of the equifrequency contour passing through this point van-
ishes to fourth order indk, and thus we would expect an
optimal insensitivity to the angular spread of the incoming
beam.

VI. CONCLUSION

We have provided convenient formulas for the calculation
of the superprism parameters. Not only do these formulas
simplify the analysis of superprism performance, but they
also show that infinite resolution as determined by the pa-
rameterr is theoretically attainable in any crystal and any
band. The art of superprism design is to obtain strong reso-
lution, yet over reasonable bandwidths, and to combine this
with good energy efficiency. The accurate and computation-
ally efficient formulas derived here and the identification of
the region in the Brillouin zone associated with very high
resolution should help future research aimed at exploring
applications and devices based on superprism phenomena in
photonic crystals.
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APPENDIX A: EVALUATION OF DERIVATIVES ALONG
EQUIFREQUENCY CONTOURS

1. Derivatives needed forp

By simple geometry, we can consider the incoming wave
vectork as a function ofui and ṽ,

ksui,ṽd =
2pnṽ

a
ssinui,cosuid. sA1d

Figure 1 indicates how to findk givenk so it is reasonable to
view the in-crystal wave vector as a functionkskd of the
incoming wave vector. Thus the group velocityvskd has the
complete dependencevhkfksui ,ṽdgj By the chain rule, we
can write

U ]v j

]ui
U

ṽ

=
]v j

]kl
U ]kl

]ui
U

ṽ

=
]v j

]kl

]kl

]km
U ]km

]ui
U

ṽ

sA2d

=
]2ṽ

]k j]kl

]kl

]km
U ]km

]ui
U

ṽ

. sA3d

Here repeated indices indicate a sum over the coordinatesx
andh and we usedv j =]ṽ /]k j. The first term in Eq.sA3d is
the standard second derivativeṽ,jl . We now need to simplify
the other derivatives]kl /]km and us]km/]uiduṽ. For the first
of these, we find the inverse of the matrix of reciprocal de-
rivatives:

]k j

]kl
= F ]kj

]kl
G−1

= 3
]kh

]kh

]kh

]kx

]kx

]kh

]kx

]kx

4
−1

sA4d

=3 1 0

S2pn

a
D2ṽṽ,h

kx

−
kh

kx
S2pn

a
D2ṽṽ,x

kx

4
−1

= 3 1 0

ṽ,h

kxs2pn/ad2ṽ
−

ṽ,h

ṽ,x

kx

s2pn/ad2ṽṽ,x
4 . sA5d

Here we have used Eqs.s4d ands6d, in progressing from the
first to the second line.

Finally, to obtain]kj /]ui, we introduce a new coordinate
pair d=sui ,ṽd, so that]kj /]ui =]kj /]d1. Then, proceeding as
before we have

]kj

]dl
= F ]d j

]kl
G−1

= 3
]ui

]kh

]ui

]kx

]ṽ

]kh

]ṽ

]kx

4
−1

sA6d

=1 1

s2pa/nd2ṽ3kx

ṽ

− kh

ṽ

kh kx

42
−1

= 3 kx

kh

ṽ

− kh

kx

ṽ
4 .

sA7d

Combining Eqs.sA5d and sA7d with the last of Eq.s10d
yields Eq.s11d.

2. Derivatives needed forq

The procedure for the derivatives required forq is similar.
This time, we have
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U ]v j

]ṽ
U

ui

=
]v j

]kl
U ]kl

]ṽ
U

ui

sA8d

=
]v j

]kl

]kl

]km
U ]km

]ṽ
U

ui

sA9d

=
]2ṽ

]k j]kl

]kl

]km
U ]km

]ṽ
U

ui

. sA10d

Since u]km/]ṽuui
=]km/]d2, Eqs.sA5d and sA7d provide the

remaining unknowns in Eq.sA10d, which substituted into the
last of Eq.s12d gives Eq.s13d.
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